
Low-energy limit of Yang–Mills with massless adjoint quarks: chiral Lagrangian and Skyrmions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 6221

(http://iopscience.iop.org/1751-8121/40/23/015)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/23
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 6221–6237 doi:10.1088/1751-8113/40/23/015

Low-energy limit of Yang–Mills with massless adjoint
quarks: chiral Lagrangian and Skyrmions

R Auzzi and M Shifman

William I Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455,
USA

Received 6 March 2007, in final form 26 April 2007
Published 22 May 2007
Online at stacks.iop.org/JPhysA/40/6221

Abstract
If the fundamental quarks of QCD are replaced by massless adjoint quarks, the
pattern of the chiral symmetry breaking drastically changes compared to the
standard one. It becomes SU(Nf ) → SO(Nf ). While for Nf = 2, the chiral
Lagrangian describing the ‘pion’ dynamics is well known, this is not the case at
Nf > 2. We outline a general strategy for deriving chiral Lagrangians for the
coset spaces Mk = SU(k)/SO(k) and study in detail the case of Nf = k = 3.
We obtain two- and four-derivatives terms in the chiral Lagrangian on the coset
space M3 = SU(3)/SO(3), as well as the Wess–Zumino–Novikov–Witten
term, in terms of an explicit parameterization of the quotient manifold. Then
we discuss stable topological solitons supported by this Lagrangian. Aspects
of relevant topological considerations scattered in the literature are reviewed.
The same analysis applies to SO(N) gauge theories with Nf Weyl flavours in
the vector representation.

PACS numbers: 11.15.−q, 12.38.−t

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, a nontrivial large-N equivalence between bosonic subsectors of different gauge
theories has been established [1] (for a review see [2]). This planar equivalence connects,
in particular, the Yang–Mills theory with Nf Dirac fermions in the two-index symmetric (or
antisymmetric) representation of colour SU(N) on the one side, with the theory with Nf Weyl
quarks in the adjoint representation on the other side.

If the number of flavours Nf > 1, both theories under consideration have a chiral
symmetry which is spontaneously broken. The pattern of the chiral symmetry breaking (χSB)
is different [3–5]. For Nf Dirac fermions in the two-index (anti)symmetric representation, the
pattern of χSB is identical to that of QCD, namely,

SU(Nf )L × SU(Nf )R → SU(Nf )V . (1)
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On the other hand, in the SU(N) gauge theories with Nf Weyl fermions in the adjoint
representation we have the following χSB pattern1:

SU(Nf ) → SO(Nf ). (2)

Thus, in this case the low-energy effective theory is a sigma model on the target space

Mk = SU(k)/SO(k) (3)

with k = Nf . This effective theory describes the interactions of the Goldstone bosons of the
theory, the ‘pions.’ (Let us note in passing that the same sigma model emerges in SO(N)

gauge theories with Nf Weyl fermions in the vector representation. In this case, for large
enough N there is no upper bound on Nf .)

For two adjoint flavours, M2 = SU(2)/SO(2) = S2. The corresponding sigma model is
a well-studied O(3) sigma model [6]. With a four-derivatives term included it goes under the
name of the Skyrme–Faddeev model (or, sometimes, the Faddeev–Hopf model) [7]. Solitons
in this model are intriguingly interesting because of their knotted structure. They are known
as Hopf solitons and were extensively studied [7, 8] within the framework of a ‘glueball
hypothesis’ [7] according to which the Hopf solitons may be relevant to the description of
glueball states in pure Yang–Mills theory. The fact that they are certainly relevant in the
studies of solitons built from pions was noted in [9] where a detailed analysis of the Nf = 2
case is presented. In application to chiral Lagrangians, it is natural to refer to these solitons
as Hopf Skyrmions. At large N, the quasi-classical consideration of the Skyrmions2 becomes
theoretically justified [11, 12]; therefore, these solitons should be in one-to-one correspondence
with certain hadronic states from the spectrum of the given microscopic theory (see [13] for a
discussion of this problem in Yang–Mills with two-index (anti)symmetric matter).

As was mentioned, the two-flavour case is singled out by the fact that in this problem the
effective low-energy Lagrangian is known, so that its analysis, as well as that of solitons it
supports, can be carried out in more or less explicit manner, through a combination of analytic
and numeric methods (see [9]). At the same time, to the best of our knowledge, sigma models
on the target spaces (3) with k = 3, 4 and 5 have not been studied in the literature so far. In
this work we fill the gap. First, we outline general considerations referring to three, four and
five flavours. Then we derive, in an explicit form, the chiral Lagrangian for the sigma model
on M3. We discuss its features in much detail. In particular, we discuss solitons in this model,
and how they match the Hopf Skyrmions of the Nf = 2 model if one ascribes a large mass
term to the third flavour.

The topology of the target space gives us information about the solitons in the model.
The second homotopy group, π2(Mk), is relevant for the spectrum of the flux tubes3. On the
other hand, π3(Mk) gives us the spectrum of the particle-like solitons (Skyrmions). Moreover,
π4(Mk) and π5(Mk) are relevant for the introduction of the Wess–Zumino–Novikov–Witten
(WZNW) [15] term which, in the case of QCD, tells us how to quantize the Skyrmion, i.e.
whether it becomes a fermion or a boson upon quantization [11, 12]. The relevant homotopy
groups are shown in table 1.

1 To ensure the very existence of the global chiral symmetry on the one hand, and to keep the microscopic theory
asymptotically free on the other, we must assume that 2 � Nf � 5. A more exact version of equation (3) is
SU(k) × Z2N → SO(k) × Z2 where the discrete factors are the remnants of the anomalous singlet axial U(1); they
play no role in what follows.
2 The Skyrmions were introduced in particle physics long before QCD [10].
3 As was pointed out in [14], the Skyrme model with just the quadratic and quartic terms exhibits size instability for
all vortices: under a spatial rescaling r → λr the quadratic contribution stays invariant and the quartic one rescales
by a factor λ2. Therefore, the energy is minimized at infinite size. As discussed in [14], this divergence can be
eliminated, for example, by giving a bare mass to the quarks, which explicitly breaks the flavour symmetry and
induces a potential term on the target space of the sigma model under consideration.
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Table 1. Some homotopy groups for the manifoldsMk (see [11, 16]). The relevant exact sequences
are discussed in appendix A. The WZNW term cannot be introduced for k = 2, 4 because π4(Mk)

is nontrivial. On the other hand, the Z2 factors in π5(M3,5) present no topological obstruction for
the WZNW term.

k dim Mk π2 π3 π4 π5

2 2 Z Z Z2 Z2

3 5 Z2 Z4 1 Z ⊗ Z2

4 9 Z2 Z2 Z Z ⊗ Z2 ⊗ Z2

5 14 Z2 Z2 1 Z ⊗ Z2

k > 5 k2+k−2
2 Z2 Z2 1 Z

For k = 2, the target space M2 reduces to a two-dimensional sphere S2. The
corresponding sigma model supports flux tubes due to the fact that π2(M2) = Z, which
are classified by integer topological numbers.

Since π3(M2) = Z, the Hopf Skyrmions are also classified by integers (these solitons
can be understood as twisted flux tubes; mathematically, this can be shown by using the Hopf
fibration, which gives us the first topologically nontrivial map between S3 and S2).

Furthermore, we have π4(S
2) = Z2, implying that it is possible to quantize the Hopf

Skyrmions both as bosons or as fermions [17–19]. There is no WZNW term for two flavours.
In order to have the WZNW term, the target manifold of the sigma model in question must
have dimension five or larger.

We will dwell on the Nf = 3 case. We will introduce an explicit parameterization of
the coset space M3 = SU(3)/SO(3) and construct an explicit Lagrangian for this sigma
model, including the quadratic and quartic terms. It is shown that the homotopy class relevant
for the Z2 vortices and for the Z4 Skyrmions supported by this Lagrangian can be obtained
by an embedding of the corresponding homotopy class from M2. The WZNW term will be
calculated. We will show that it is proportional to the 5-volume form on M3.

The organization of the paper is as follows. In section 2, we outline a general formalism
allowing one to construct sigma models on G/H manifolds. We review the application of this
formalism to the SU(2)/SO(2) case; as a warm-up exercise we derive in this formalism the
chiral Lagrangian of the O(3) Skyrme–Faddeev model. In section 3, we apply it to the k = 3
case. We introduce explicit coordinates and then obtain the metric on M3 = SU(3)/SO(3).
The two-derivative part of the Lagrangian is presented in section 3, while the four-derivative
part in appendix B. Topological aspects relevant to various solitonic configurations in the
SU(3)/SO(3) sigma model are discussed in section 4. The WZNW term on M3 is calculated
in section 5. Appendix A presents the exact sequences for some homotopy groups used in the
paper.

2. General considerations

To refresh memory, it is convenient to start from the well-known case of QCD with Nf

Dirac quarks. Then the Lagrangian of the Skyrme model includes the following two- and
four-derivatives terms:

L = F 2
π

4
L2 +

1

e2
L4

= F 2
π

4
Tr(∂µU∂µU †) +

1

e2
Tr[(∂µU)U †, (∂νU)U †]2, (4)
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where the matrix U is an element of the SU(Nf ) group, and Fπ and e are constants. The
subscript π will be omitted hereafter. The two-derivatives term is just the kinetic term of
the Goldstone bosons of the theory; mathematically, it is the metric of the target manifold.
The four-derivatives term is needed in order to stabilize the particle-like solutions, which
otherwise would tend to shrink to zero size. The coset space corresponding to (1) is a groups
space itself.

In the generic case of the group quotient G/H , a general prescription for obtaining two-
derivatives terms was given long ago in [20]. This issue has been recently discussed anew in
[21] in a slightly modified perspective pertinent to the Faddeev–Skyrme models. Following
the formalism of the latter paper, we get for the two-derivatives term

L2 = Tr(Ph⊥(U †∂µU) · Ph⊥(U †∂µU)), (5)

where Ph⊥ is the projection in the Lie algebra of G on the space orthogonal to the Lie algebra
of H, which we call h. The construction of Ph⊥ will be discussed momentarily. Analogously,
the four derivatives term is

L4 = Tr[Ph⊥(U †∂µU), Ph⊥(U †∂νU)]2. (6)

As a warm-up exercise let us discuss first the Faddeev–Skyrme model, in which G =
SU(2) and H = SO(2), and the explicit form of the Lagrangian is well known. The quotient
can be parameterized using the matrix exponential of the SU(2) generators which are not in
the chosen H = SO(2) = U(1). Let us assume that the U(1) factor is generated by the
second Pauli matrix,

eiσ2t , σ2 =
(

0 −i
i 0

)
. (7)

Then these generators of G/H are the symmetric self-adjoint two-by-two matrices. Any such
element can be parameterized as

U = exp(iV · A · V †), (8)

where A is the diagonal matrix,

A =
(

+θ/2 0
0 −θ/2

)
, (9)

and

V =
(

cos α/2 −sin α/2
sin α/2 cos α/2

)
. (10)

With this parameterization we recover the standard S2, provided

0 � θ � π, 0 � α � 2π. (11)

Indeed, the projection Ph⊥(T ) defined on the Lie algebra of SU(2) is given by

Ph⊥(T ) = T − 1
2σ2Tr(T · σ2). (12)

Then we obtain equation (8) and, from equation (5), we arrive at the two-derivatives term
presenting the standard on S2,

1
2 [(∂µθ)2 + sin2 θ(∂µα)2] = 1

2 (∂µ�n)2, �n · �n = 1. (13)

Furthermore, the four-derivatives term is recovered from equation (6),
1
2 sin2 θ(∂µθ∂να − ∂νθ∂µα)2, (14)

which identically reduces to
1
2 (∂µ�n ∧ ∂ν �n)2. (15)
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3. An explicit Lagrangian for k = 

We can proceed in a way analogous to what we have just done for the k = 2 case. We
parameterize the quotient using the matrix exponential of the generators of SU(3) which are
not in SO(3). These generators are the symmetric 3 × 3 matrices. It is always possible
to diagonalize a symmetric matrix in an orthogonal basis. We introduce the parameters
θ, η for the eigenvalues of the matrix and the parameters α, β, γ as the Euler angles for the
transformation which brings the generic symmetric matrix in diagonal form. The angular
range of each of the five parameters mentioned above will be determined using the SO(3)

quotient relations.
The parameterization we use is as follows:

U = exp(iV · A · V †) (16)

where

A = 1

2




η/
√

3 + θ 0 0
0 η/

√
3 − θ 0

0 0 −2η/
√

3


 (17)

and V is an SO(3) matrix parameterized by three Euler angles α, β, γ ,

V =




cos α
2 cos γ

2 − cos β

2 sin α
2 sin γ

2 −sin α
2 cos γ

2 − cos α
2 cos β

2 sin γ

2 sin β

2 sin γ

2

cos α
2 sin γ

2 + cos β

2 sin α
2 cos γ

2 −sin α
2 sin γ

2 + cos α
2 cos β

2 cos γ

2 −cos γ

2 sin β

2

sin α
2 sin β

2 cos α
2 sin β

2 cos β

2


.

(18)

The angle variation range for the θ is

0 � θ � π. (19)

The range for θ comes from the following equivalence which holds modulo SO(3) conjugation:

θ → 2π − θ, α → α ± π. (20)

In other words,

Uθ,α · (U2π−θ,α±π )−1 ∈ SO(3). (21)

In addition, the action of α rotations modulo SO(3) is trivial at θ = π . The range for η is

− θ√
3

� η � θ√
3
. (22)

This is due to the fact that we do not have to double-count different eigenvalue orderings
(we can make an arbitrary permutation of the diagonal elements by applying a combination
of α = π, β = π and γ = π rotations). At η = ±θ/

√
3 we observe that two of the three

elements are degenerate.
Finally, the range of variation for the Euler parameters is

0 � α � 2π, 0 � β � 2π, 0 � γ � 2π. (23)

These ranges come from the following three distinct invariances for the matrix U:

α → α + 2π,

α → 2π − α, β → β + 2π,

α → 2π − α, β → 2π − β, γ → γ + 2π.

(24)
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The Lie algebra of H = SO(3) is generated by three Gell–Mann matrices, λ2, λ5 and λ7,

λ2 =

0 −i 0

i 0 0
0 0 0


 , λ5 =


0 0 −i

0 0 0
i 0 0


 , λ7 =


0 0 0

0 0 −i
0 i 0


 . (25)

The projector Ph⊥(T ) is

Ph⊥(T ) = T − 1
2 {λ2Tr(T · λ2) + λ5Tr(T · λ5) + λ7Tr(T · λ7)}. (26)

The two-derivatives term can be obtained upon substituting the parameterization (16)–(18)
into the general equation (5),

L2 = 1

4

[
2(∂µθ)2 + 2(∂µη)2 + 2 sin2 θ(∂µα)2

+ (1 − cos
√

3η cos θ − cos α sin
√

3η sin θ)(∂µβ)2

+
1

2
(∂µγ )2(2 − (1 + cos β) cos2 θ − 2 cos

√
3η cos θ sin2 β

2

+ 2 cos α sin2 β

2
sin

√
3η sin θ + sin2 θ + cos β sin2 θ)

+

(
4 cos

β

2
sin2 θ

)
(∂µα)(∂µγ )

−
(

2 sin α sin
β

2
sin

√
3η sin θ

)
(∂µβ)(∂µγ )

]
. (27)

As a nontrivial check we can compute from this metric the scalar curvature. We find that
it is constant as is required for the symmetric space,

r = 15. (28)

Moreover, the Ricci tensor is proportional to the metric (M3 is an Einstein manifold, as for
many other coset spaces),

Rab = 3gab, (29)

where gab is just the metric in equation (27) written in the tensorial form.
The four-derivatives term can be computed from equation (6); the result is quite bulky.

The explicit expression for the four-derivatives term is given in appendix B.

4. Topology and solitons

4.1. Topology of the sections at constant (θ, η)

Let us discuss figure 1 in some detail. For every fixed value of (θ, η) we have a submanifold
R(θ, η). First of all let us consider the topology of R(θ, η) for a generic value inside the
triangle in figure 1,

−θ/
√

3 < η < θ/
√

3 and 0 < θ < π.

Each of these submanifolds is parameterized by a generic SO(3) rotation with the Euler angles
α, β, γ .
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Figure 1. Range of variation for θ and η. At the triangle vertices the action of the Euler rotations
is trivial (they correspond to points on M3). These three points are in correspondence with the
centre Z3 of SU(3). Any point on the sides of the triangle corresponds to a two-dimensional
submanifold, while any point in the interior corresponds to a three-dimensional submanifold.

There is a subtle point, however. Some of these SO(3) elements have a trivial action.
These element constitute a Z2 ⊗ Z2 subgroup of SO(3), let us call it A,

A = {1, a, b, a · b}, (30)

where

a =

−1 0 0

0 −1 0
0 0 1


 , b =


1 0 0

0 −1 0
0 0 −1


 , a · b =


−1 0 0

0 1 0
0 0 −1


 . (31)

It is not difficult to check that

a2 = b2 = (a · b)2 = 1. (32)

From expressions above it is rather obvious that A is a subgroup of SO(3).
It is well known that SU(2) and SO(3) differ by the centre element Z2,

SO(3) = SU(2)/Z2. (33)

It is convenient to introduce the projection operator P ,

SU(2)
P−→ SO(3). (34)

Now, we will need to build an eight-element subgroup Ã of SU(2) which is in the same
relation to A as in equation (34), namely,

Ã = P−1A. (35)

The eight elements of the subgroup Ã are as follows: let us call the Z2 centre element in
equation (33) as c̃. Moreover,

ã = exp(iπσ3/2), b̃ = exp(iπσ1/2). (36)
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Then

Ã = {1, ã, ã2 = c̃, ã3, ãb̃, ã2b̃, ã3b̃, ã4b̃ = b̃}. (37)

This is a subgroup of SU(2) isomorphic to the dihedral group D4,

Ã ∼ D4.

The group D4 has three possible Z4 subgroups, each of them generated by powers of ã, b̃, ãb̃.
The conclusion we arrive at is

R(θ, η) = SU(2)/D4, (38)

which entails

π1(R(θ, η)) = D4. (39)

Equation (39) is due to the fact that SU(2) is simply connected.
Now let us consider ‘degenerate’ values of (η, θ) on a side of the triangle (η = ±θ/

√
3 or

θ = π ) in figure 1. In such points we have that the SO(3) group degenerates into SO(2)×Z2.
For example, at η = −θ/

√
3, the SO(2) subgroup is generated by

exp


i


 0 0 1

0 0 0
−1 0 0


 t


 , (40)

and the Z2 element is

b =

1 0 0

0 −1 0
0 0 −1


 . (41)

We conclude that on the three segments η = θ/
√

3, η = −θ/
√

3 and θ = π

R(θ, η) = SO(3)/SO(2)

Z2
= S2/Z2 = PR

2, (42)

which implies, of course,

π1(R(θ, η)) = Z2. (43)

If, in consideration of the R(θ, η) section we continuously move from a point in the
internal part of the triangle to a point on one of its three sides, we have that a Z4 subgroup
of the fundamental group D4 becomes trivial. We have that a different Z4 subgroup becomes
trivial on each of the sides of the triangle, namely,

η = θ/
√

3 → (1, b̃, b̃2, b̃3),

η = −θ/
√

3 → (1, ãb̃, (ãb̃)2, (ãb̃)3),

θ = π → (1, ã, ã2, ã3).

(44)

Finally, if we consider the vertices P1,2,3 of the triangle, the action of the Euler rotations
modulo the unbroken SO(3) is trivial. Therefore, in correspondence with these three values,
we find that R(P1,2,3) is a point.
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4.2. Homotopy group generators

After this discussion we are ready to elucidate how to explicitly build the 2- and 3-cycles in
our parameterization. The vortex soliton will wrap on a nontrivial 2-cycle while the Skyrmion
will wrap on a 3-cycle, so this discussion is important for understanding of how to build the
solitons in the theory at hand.

Let us start with the 2-cycle. From [11] we know that

π2(M3) = Z2.

Hence, the problem is to identify the homotopy class of the only topologically nontrivial map
from S2 onto M3.

Let us denote (θs, φs) the standard coordinates on S2. We then can build this nontrivial
map in the following way: we map the north pole of S2 onto P1 and the south pole onto P2.
We map the θs coordinate of the sphere along the η = −θ/

√
3 line, with the relation θs = θ .

The φs coordinate, on the other hand, is mapped continuously onto a representative of the
nontrivial 1-cycle of

π1(R(θ, η = −θ/
√

3)) = Z2.

For example, β, γ = 0 and α = φs.
There is no way to shrink this map to a point. It is possible, say, to continuously transform

the map from the segment P1P2 to P1P3 or to P2P3, but it is impossible to shrink the map to
trivial in this way. Also, if we compose this map twice, as in the definition of π2, we find a
topologically trivial map.

This map is also homotopic to the map

θ = θs, α = φs,

with η = β = γ = 0. The image of this map is in the M2 submanifold of M3 defined
by the constraint η = β = γ = 0; the homotopy class corresponds to the vortex with the
minimal winding in M2. This shows that if we embed the minimal winding vortex of the
Faddeev–Skyrme model in M3, we obtain a representative of the homotopy class of the Z2

vortex. On the other hand, the vortices with nonminimal winding are unstable if embedded in
M3: those with the even winding number will decay to the topologically trivial configuration
and those with the odd winding number to the Z2 minimal vortex.

From the exact sequence of the homotopy group of a fibre bundle (discussed in appendix
A), we know not only that

π3(M3) = Z4,

but, in addition, that the elements of Z4 are the projection modulo 4 of

π3(SU(3)) = Z

induced by the quotient procedure. In other words, if we take a homotopy class n ∈ π3(SU(3))

it corresponds to the n modulo 4 class in π3(M3).
We also know that the elements of π3(SU(3)) are just those of the embedded π3(SU(2)).

The projection induced by the Hopf fibration gives a one-to-one correspondence between

π3(SU(2)) = Z and π3(M2 = SU(2)/SO(2)) = Z.

This tells us that if we embed the solutions of the Faddeev–Skyrme model in M3, they are
topologically stable modulo 4. Thus, the solutions with the Hopf number 4n are topologically
trivial in M3, while the others will tend to decay to the minimal Z4 representative. This
gives us an upper bound on the mass of each of the three Z4 Skyrmions from the mass of the
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Figure 2. The Skyrmions of the theory with k = 2 (the Faddeev–Skyrme model) are labelled by
integer n ∈ Z. If embedded in the theory with k = 3, they will tend to decay to the corresponding
Z4 topological class. If we further embed the Skyrmions in the theory with k � 4 only the
Skyrmions with Z2 topological class will survive.

corresponding Skyrmion in the Faddeev–Skyrme model (the three relevant ones are those with
the Hopf numbers 1, 2 and −1).

An interesting problem is to study the explicit breaking of the SU(3) flavour symmetry in
M3. To this end, one can introduce a mass term m3 	= 0 to the quark of the third flavour in the
microscopic theory. This mass term breaks the flavour group SU(3) down to SU(2). In the
low-energy effective theory, with the chiral Lagrangian (27), a potential term on M3 will be
generated (which will vanish, of course, on the M2 submanifold). If m3 → ∞ all Skyrmion
maps are stable since π3(M2) = Z.

At finite m3, the Skyrmions with the winding number larger than 2 and smaller than −1
will become metastable. They will tunnel to the four stable configurations (see figure 2). If
m3 is large enough, it should be possible to calculate the lifetimes of the metastable states by
using semiclassical methods.

If we further embed the model in Mk with k � 4, some of the Z4 Skyrmions will become
unstable and will decay into the Z2 Skyrmions.

5. Wess–Zumino–Novikov–Witten term

If π4(G/H) is trivial there is no topological obstruction for introduction of the WZNW term4.
This condition is satisfied for k = 3 and for k � 5. We can naturally generalize the expression
from the one referring to the SU(N) case, discussed in [11, 12],

SWZNW ∝
∫

B5

d
µνρσλTr{Ph⊥(U †∂µU) · Ph⊥(U †∂νU)

×Ph⊥(U †∂ρU) · Ph⊥(U †∂σU) · Ph⊥(U †∂λU)}. (45)

4 Ideas as to how one could introduce a nonstandard WZNW term in the cases of nontrivial π4(G/H) are discussed
in [22].
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In order to avoid an ambiguity in the quantization procedure due to different possible
choices of B5 for a given S4 boundary (see [11]), we have to require the contribution of this
term to be a multiple of 2π if integrated on an arbitrary S5 manifold. The integral of this
term over the S5 manifold is a topological invariant which depends on the topological class in
π5(G/H). The value of the integral vanishes for the S5 cycles in finite cyclic factors Zk of
π5(G/H) (there are indeed Z2 factors in π5(Mk) for k = 3, 5, but they are irrelevant for the
WZNW term). On the other hand, the integral can be non-vanishing on the Z factor, and its
value is proportional to the ‘winding number.’

We have to normalize SWZNW as follows:

SWZNW = nA

∫
B5

d
µνρσλTr{Ph⊥(U †∂µU) · Ph⊥(U †∂νU)

×Ph⊥(U †∂ρU) · Ph⊥(U †∂σU) · Ph⊥(U †∂λU)}, (46)

where the normalization factor A is chosen in such a way that the integral on the map with the
minimal winding (in the Z factor of the π5) between S5 and G/H is 2π and n is an arbitrary
integer.

In the case of M3, we calculated the WZNW term using the parameterization introduced
in section 3. It is proportional to the volume form of the manifold (this is due to the fact that
our target manifold is five dimensional). Namely,

SWZNW = nA
i60

64
√

3

∫
B5

d
µνρσλ(∂µθ · ∂νη · ∂ρα · ∂σβ · ∂λγ )

× (cos
√

3η − cos θ) sin
β

2
sin θ. (47)

The coefficient A must be adjusted to make the integral 2π on the map from S5 to M3

corresponding to the minimal winding. The element of

π5(M3) = Z × Z2

with the minimal winding in the Z factor makes l = 2 windings around the manifold. As a
result, we find the following value for the normalization factor A:

A = − 2i

15π2
. (48)

6. Conclusions and outlook

If the fundamental quarks of QCD are replaced by massless adjoint quarks, the pattern of the
chiral symmetry breaking is SU(Nf ) → SO(Nf ). This work addresses and solves the issue
of constructing sigma models on the coset spaces SU(Nf )/SO(Nf ). The only case which
had been explicitly solved previously is Nf = 2. This is the celebrated O(3) or CP(1) model.
We focused mainly on Nf = 3, presenting a full solution in this particular case, with a few
general remarks on Nf > 3 scattered in the bulk of the paper. These remarks outline a general
strategy for constructing the SU(Nf )/SO(Nf ) sigma models for arbitrary Nf .

We found an explicit parameterization for the sigma model with the target space
M3 = SU(3)/SO(3) in terms of five angles. The low-energy effective chiral Lagrangian is
presented in equations (27), (47) and (B.2). As a check we computed the scalar curvature for
the metric we got, and we found a constant, as is required for any homogeneous space.
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We obtained WZNW term too. Due to the fact M3 is a five-dimensional manifold, the
WZNW term is proportional to the volume form.

We discussed the topological side of the SU(3)/SO(3) sigma models. The nontrivial
homotopy classes of π2(M3) = Z2 and π3(M3) = Z4, relevant for the vortex lines and
Skyrmions, can be found by embedding in M3 some nontrivial homotopy classes of the
Faddeev–Skyrme model.

We can say that the algebraic aspect of the low-energy chiral dynamics corresponding
to the χSB pattern (2) is in essence clear at the moment. This problem has another aspect,
dynamical, related to interpreting the algebraic results obtained above in the language of
the underlying microscopic theory—Yang–Mills with the adjoint quarks. Since π3(Mk) is
nontrivial, the SU(Nf )/SO(Nf ) chiral Lagrangians predict some ultraheavy stable solitons,
analogues of the QCD Skyrmions, whose mass scales as N2

c at large Nc. The question is can we
understand these solitons (and their stability) in the language of the microscopic (ultraviolet)
theory?

This question obviously should be addressed and answered in the framework of an
independent project whose thrust is on dynamical roots of the soliton stability in the Yang–
Mills theory with the adjoint quarks. The work in this direction has just started, with first
results reported in a follow-up publication [9].

In conventional QCD, the Skyrme topological charge is matched with the baryon number;
in this way, the Skyrmions can be identified with baryons, and their stability is protected by
the global symmetry—the baryon charge conservation.

In adjoint QCD there is no such obvious reason for stability; the analogue of the baryon
charge, the fermion number, is broken first to Z2NcNf

by the chiral anomaly; this discrete
symmetry is then spontaneously broken to Z2 by the fermion condensates. This Z2 symmetry
is not sufficient by itself to protect the soliton from decaying. This is due to the fact that in
addition to the Goldstone bosons, which of course have vanishing fermion number, we expect
light composite fermions of the form

ψβf ∝ Tr
(
λα

f σ
µν
αβ Fµν

)
, (49)

with an odd fermion number (in this expression λα
f is the adjoint Weyl fermion and σ

µν
αβ Fµν is

the gluon field strength field in the spinorial notation).
The problem of the soliton stability in the case Nf = 2 is solved in [9]. The

solitons turn out to be in correspondence with exotic hadrons with mass O
(
N2

c

)
and

P = (−1)Q(−1)F = −1, where Q is the conserved charge corresponding to the unbroken
U(1) flavour subgroup. All other lighter degrees of freedom have P = 1; the Goldstone
bosons have zero fermion number and even Q charge; the light fermions ψ have an odd Q
charge and odd fermion number. This is just a Z2 stability (a configuration with the Hopf
number two can indeed decay to an array of π ’s and ψ’s). To detect this phenomenon in
the low-energy chiral theory we need to introduce the fermions ψ in the effective low-energy
sigma model.

This problem for Nf > 2 is currently under investigation.
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Appendix A. Exact sequences for some homotopy groups

A.1. π2

The k = 2 case is special,

· · · → π2(SU(k)) → π2(SU(2)/SO(2)) → π1(SO(2)) → π1(SU(2)) → · · ·
· · · → 0 → X → Z → 0 → · · · ,

which gives us X = Z.
For k > 2 we have the following exact sequence:

· · · → π2(SU(k)) → π2(SU(k)/SO(k)) → π1(SO(k)) → π1(SU(k)) → · · ·
· · · → 0 → X → Z2 → 0 → · · · ,

which gives us X = Z2.

A.2. π3

For k = 2 we know that the result is given by the Hopf fibration, π3(S
2) = Z.

For k = 3 and k � 5 we have the following exact sequence:

· · · → π3(SO(k)) → π3(SU(k)) → π3(SU(k)/SO(k)) → π2(SO(k)) → · · ·
· · · → Z → Z → X → 0 → · · · ,

which gives us X = Zs where s is the rank of the map between π3(SO(k)) and π3(SU(k))

induced by the embedding SO(k) → SU(k).
The number s can be calculated using the ‘winding number’ integral discussed in

[23, 24],

s = − 1

24π2

∫
S3

Tr(U †dU)3, (A.1)

where this integral is calculated on the smaller non-zero element of π3(SO(k)). For SO(3) a
representative of the minimal element of π3 is

(θ, φ, ρ) → exp(iqj n̂jρ), (A.2)

where S3 is parameterized by

n̂j = (sin θ cos φ, sin θ sin φ, cos θ), 0 < ρ < 2π,

and

q1 =

0 0 0

0 0 i
0 −i 0


 , q2 =


 0 0 i

0 0 0
−i 0 0


 , q3 =


 0 i 0

−i 0 0
0 0 0


 .

For k � 5, we have to use

q1 = 1/2




0 0 i 0 . . .

0 0 0 −i . . .

−i 0 0 0 . . .

0 i 0 0 . . .

...
...

...
...

. . .




, q2 = 1/2




0 0 0 i . . .

0 0 i 0 . . .

0 −i 0 0 . . .

−i 0 0 0 . . .

...
...

...
...

. . .




,

q3 = 1/2




0 i 0 0 . . .

−i 0 0 0 . . .

0 0 0 i . . .

0 0 −i 0 . . .

...
...

...
...

. . .




,

where the dots denote zeros. This gives s = 4 for k = 3 and s = 2 for k � 5.



6234 R Auzzi and M Shifman

The k = 4 case is particular,

· · · → π3(SO(4)) → π3(SU(4)) → π3(SU(4)/SO(4)) → π2(SO(4)) → · · ·
· · · → Z ⊗ Z → Z → X → 0 → · · · .

Again the elements of π3(SU(4)/SO(4)) are in correspondence with the elements of
π3(SU(4)) which are not homotopic to any elements of π3(SO(4)). The same winding
number argument used in the previous case for k � 5 gives us X = Z2.

A.3. π4

The k = 2 case is singled out,

· · · → π4(SO(2)) → π4(SU(2)) → π4(SU(2)/SO(2)) → π3(SO(2)) → · · ·
· · · → 0 → Z2 → X → 0 → · · · ,

which gives us X = Z2.
For k = 3 and k � 5 we have the following exact sequence:

· · · → π4(SU(k)) → π4(SU(k)/SO(k)) → π3(SO(k)) → π3(SU(k)) → · · ·
· · · → 0 → X → Z → Z → · · · ,

which gives us X = 0.
The k = 4 case is also special,

· · · → π4(SU(4)) → π4(SU(4)/SO(4)) → π3(SO(4)) → π3(SU(4)) → · · ·
· · · → 0 → X → Z ⊗ Z → Z → · · · ,

which gives us X = Z.

A.4. π5

The k = 2 case is special, as usual,

· · · → π5(SO(2)) → π5(SU(2)) → π5(SU(2)/SO(2)) → π4(SO(2)) → · · ·
· · · → 0 → Z2 → X → 0 → · · · ,

which gives us X = Z2.
For k = 3, 5 we have the following exact sequence:

· · · → π5(SU(k)) → π5(SU(k)/SO(k)) → π4(SO(k)) → π4(SU(k)) → · · ·
· · · → Z → X → Z2 → 0 → · · · ,

implying two alternatives,

X = Z or X = Z ⊗ Z2.

In [16] it is shown that the last option is the correct one.
The k = 4 case is distinct,

· · · → π5(SU(4)) → π5(SU(4)/SO(4)) → π4(SO(4)) → π4(SU(4)) → · · ·
· · · → Z → X → Z2 ⊗ Z2 → 0 → · · · ,

which gives us the alternatives

X = Z ⊗ Z2 or X = Z ⊗ Z2 ⊗ Z2.

It was shown in [16] that the last choice is the correct one.
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For k = 6 we get

· · · → π5(SO(k)) → π5(SU(k)) → π5(SU(k)/SO(k)) → π4(SO(k)) → · · ·
· · · → Z → Z → X → 0 → · · · ,

which is not enough to find X. In [16] it was shown that X = Z.
For k > 6:

· · · → π5(SO(k)) → π5(SU(k)) → π5(SU(k)/SO(k)) → π4(SO(k)) → · · ·
· · · → 0 → Z → X → 0 → · · · ,

which gives X = Z.

Appendix B. Four-derivatives term

The four-derivatives term can be computed from equation (6). Let us introduce the following
compact notation:

S
µν

(θ,η) = ∂µθ∂νη − ∂µη∂νθ, (B.1)

and the same for all other possible coordinate pairings among θ, η, α, β, γ . Then we
obtain, after a rather straightforward but quite cumbersome calculation, the following explicit
expression:

L4 = 8 sin2 θ
(
S

µν

(θ,α)

)2
+ (1 − cos

√
3η cos θ − cos α sin

√
3η sin θ)

(
S

µν

(θ,β)

)2

+ sin2 θ(1 − cos
√

3η cos θ − cos α sin
√

3η sin θ)
(
S

µν

(α,β)

)2

+ 3(1 − cos
√

3η cos θ − cos α sin
√

3η sin θ)
(
S

µν

(η,β)

)2

+ 3 sin2 β

2
(1 − cos

√
3η cos θ + cos α sin

√
3η sin θ)

(
S

µν

(γ,η)

)2

+
1

2
[8 sin2 θ + (1 − cos

√
3η cos θ + cos α sin

√
3η sin θ)

+ cos β(8 sin2 θ − (1 − cos
√

3η cos θ + cos α sin
√

3η sin θ))]
(
S

µν

(θ,γ )

)2

+ sin2 θ sin2 β

2
(1 − cos

√
3η cos θ + cos α sin

√
3η sin θ)

(
S

µν

(α,γ )

)2

+
1

8
[4 − cos α sin

√
3η sin3 θ − cos α cos β sin

√
3η sin3 θ + 3 cos β sin2 θ

+ sin2 θ − 3 cos α sin
√

3η sin θ − 3 cos α cos β sin
√

3η sin θ

− (cos β − 1) cos2
√

3η + cos β sin2
√

3η − sin2
√

3η

− cos
√

3η cos θ

(
6 − 2 cos β − 4 cos2 β

2
cos 2θ

)

− cos2 θ(1 − 3 cos α sin
√

3η sin θ + cos β(3 − 3 cos α sin
√

3η sin θ))]

× (
S

µν

(β,γ )

)2 − 2 sin α sin
β

2
sin

√
3η sin3 θ

(
S

µν

(β,α)

)(
S

µν

(γ,α)

)

+ 2 cos
β

2
sin2 θ(1 − cos

√
3η cos θ − cos α sin

√
3η sin θ)

(
S

µν

(β,α)

)(
S

µν

(β,γ )

)
+ sin α sin β sin

√
3η sin3 θ

(
S

µν

(γ,α)

)(
S

µν

(γ,β)

)

− 2
√

3 cos
β

2
sin α sin θ(cos

√
3η − cos θ)

(
S

µν

(γ,β)

)(
S

µν

(η,β)

)
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−
√

3 cos α sin β sin θ(cos
√

3η − cos θ)
(
S

µν

(γ,β)

)(
S

µν

(γ,η)

)

− 6 sin α sin
β

2
sin

√
3η sin θ

(
S

µν

(η,β)

)(
S

µν

(η,γ )

)

+ 2
√

3(cos
√

3η − cos θ) sin α sin2 β

2
sin θ

(
S

µν

(γ,α)

)(
S

µν

(γ,η)

)
− 2

√
3(cos

√
3η − cos θ) sin α sin θ

(
S

µν

(β,α)

)(
S

µν

(β,η)

)
− 3(cos

√
3η − cos θ) sin β sin θ

(
S

µν

(γ,β)

)(
S

µν

(γ,θ)

)

− 2 sin α sin
β

2
sin

√
3η sin θ

(
S

µν

(θ,β)

)(
S

µν

(θ,γ )

)

+ 16 cos
β

2
sin2 θ

(
S

µν

(θ,α)

)(
S

µν

(θ,γ )

)

− 2
√

3 sin2 β

2
(cos α(cos

√
3η cos θ − 1) − sin

√
3η sin θ)

(
S

µν

(η,γ )

)(
S

µν

(θ,γ )

)
+ 2

√
3(cos α(cos

√
3η cos θ − 1) + sin

√
3η sin θ)

(
S

µν

(η,β)

)(
S

µν

(θ,β)

)

+ 4
√

3(cos
√

3η cos θ − 1) sin α sin
β

2

(
S

µν

(η,γ )

)(
S

µν

(θ,β)

)

+ 2
√

3(cos
√

3η cos θ − 1) sin α sin
β

2

(
S

µν

(γ,β)

)(
S

µν

(θ,η)

)

− 6(cos θ − cos
√

3η) sin
β

2
sin θ

(
S

µν

(γ,β)

)(
S

µν

(θ,α)

)

− 4
√

3 sin θ(cos
√

3η − cos θ) cos α sin
β

2

(
S

µν

(γ,α)

)(
S

µν

(η,β)

)

− 2
√

3 sin θ(cos
√

3η − cos θ) cos α sin
β

2

(
S

µν

(γ,β)

)(
S

µν

(α,η)

)
. (B.2)
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